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20 Conceptual foundations

out as conceptual foundations, and so we begin out study of plasma turbulence
with them.

2.2 Dressed test particle model of fluctuations
in a plasma near equilibrium

2.2.1 Basic ideas

Virtually all theories of plasma kinetics and plasma turbulence are concerned,
in varying degrees, with calculating the fluctuation spectrum and relaxation rate
for plasmas under diverse circumstances. The simplest, most successful and best
known theory of plasma kinetics is the dressed test particle model of fluctuations
and relaxation in a plasma near equilibrium. This model, as presented here, is a
synthesis of the pioneering contributions and insights of Rostoker and Rosenbluth
(1960), Balescu (1963), Lenard (1960), Klimontovich (1967), Dupree (1961), and
others. The unique and attractive feature of the test particle model is that it offers
us a physically motivated and appealing picture of dynamics near equilibrium
which is entirely consistent with Kubo’s linear response theory and the fluctuation—
dissipation theorem (Kubo, 1957; Callen and Welton, 1951), but does not rely upon
the abstract symmetry arguments and operator properties that are employed in the
more formal presentations of generalized fluctuation theory, as discussed in texts
such as Landau and Lifshitz’s Statisical Physics (1980). Thus, the test particle
model is consistent with formal fluctuation theory, but affords the user far greater
physical insight. Though its applicability is limited to the rather simple and seem-
ingly dull case of a stable plasma ‘near’ thermal equilibrium, the test particle model
nevertheless constitutes a vital piece of the conceptual foundation upon which all
the more exotic kinetic theories are built. For this reason we accord it a prominent
place in our study, and begin our journey by discussing it in some depth.

Two questions of definition appear immediately at the outset. These are as
follows:
(a) What is a plasma?
(b) What does ‘near equilibrium’ mean?
For our purposes, a plasma is a quasi-neutral gas of charged particles with thermal
energy far in excess of electrostatic energy (i.e. kgT > ¢*/7), and with many part-
icles within a Debye sphere (i.e. l/nkg < 1), where ¢ is a charge, 7 is a mean dis-
tance between particles, 7 ~ n~'/3, n is a mean density, T is a temperature, and kg
is the Boltzmann constant. The first property distinguishes a gaseous plasma from
a liquid or crystal, while the second allows its description by a Boltzmann equa-
tion. Specifically, the condition 1/ n)% <« 1 means that discrete particle effects
are, in some sense, ‘small’ and so allows truncation of the BBGKY (Bogoliubov,
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(a) ()

Fig. 2.2. A large number of particles exist within a Debye sphere of particle A
(shown in black) in (a). Other particles provide a screening on the particle A.
When the particle B is chosen as a test particle, others (including A) produce
screening on B, (b). Each particle acts the role of test particle and the role of
screening for the other test particle.

Born, Green, Kirkwood, Yvon) hierarchy at the level of a Boltzmann equation.
This is equivalent to stating that if the two body correlation f(1,2) is written in a
cluster expansion as f (1) f(2) +g(1, 2), then g(1, 2)is of O(I/n)%) with respect
to f(1) f(2), and that higher order correlations are negligible. Figure 2.2 illustrates
a test particle surrounded by many particle in a Debye sphere. The screening on
the particle A is induced by other particles. When the particle B is chosen as a test
particle, others (including A) produce screening of B. Each particle acts in the dual

roles of a test particle and as part of the screening for other test particles.
The definition of ‘near-equilibrium’ is more subtle. A near-equilibrium plasma

is one characterized by:

(1) abalance of emission and absorption by particles at a rate related to the temperature, T';
(2) the viability of linear response theory and the use of linearized particle trajectories.

Condition (1) necessarily implies the absence of linear instability of collective
modes, but does not preclude collectively enhanced relaxation to states of higher
entropy. Thus, a near-equilibrium state need not be one of maximum entropy.
Condition (2) does preclude zero frequency convective cells driven by thermal fluc-
tuations via mode-mode coupling, such as those that occur in the case of transport
in 2D hydrodynamics. Such low frequency cells are usually associated with long
time tails and require a renormalized theory of the nonlinear response for their
description, as is discussed in later chapters.

The essential element of the test particle model is the compelling physical pic-
ture it affords us of the balance of emission and absorption which is intrinsic to
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(a) (b)

Fig. 2.3. Schematic drawing of the emission of the wave by one particle and the
absorption of the wave.

thermal equilibrium. In the test particle model (TPM), emission occurs as a dis-
crete particle (i.e. electron or ion) moves through the plasma, Cerenkov emitting
electrostatic waves in the process. This emission process creates fluctuations in the
plasma and converts particle kinetic energy (i.e. thermal energy) to collective mode
energy. Wave radiation also induces a drag or dynamical friction on the emitter,
just as the emission of waves in the wake of a boat induces a wave drag force on
the boat. Proximity to equilibrium implies that emission is, in turn, balanced by
absorption. Absorption occurs via Landau damping of the emitted plasma waves,
and constitutes a wave energy dissipation process which heats the resonant parti-
cles in the plasma. Note that this absorption process ultimately returns the energy
which was radiated by the particles to the thermal bath. The physics of wave emis-
sion and absorption which defines the thermal equilibrium balance intrinsic to the
TPM is shown in Figure 2.3.

A distinctive feature of the TPM is that in it, each plasma particle has a ‘dual
identity’, both as an ‘emitter’ and an ‘absorber’. As an emitter, each particle radi-
ates plasma waves, which are moving along some specified, linear, unperturbed
orbit. Note that each emitter is identifiable (i.e. as a discrete particle) while mov-
ing through the Vlasov fluid, which is composed of other particles. As an absorber,
each particle helps to define an element of the Vlasov fluid responding to, and
(Landau) damping the emission from, other discrete particles. In this role, particle
discreteness is smoothed over. Thus, the basic picture of an equilibrium plasma is
one of a soup or gas of dressed test particles. In this picture, each particle:

(i) stimulates a collective response from the other particles by its discreteness;
(ii) responds to or ‘dresses’ other discrete particles by forming part of the background
Vlasov fluid.

Thus, if one views the plasma as a pea soup, then the TPM is built on the idea
that ‘each pea in the soup acts like soup for all the other peas’. The dressed test
particle is the fundamental quasi-particle in the description of near-equilibrium
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(a) (b)

Fig. 2.4. Dressing of moving objects. Examples like a sphere in a fluid (a) and
a supersonic object (b) are illustrated. In the case of a sphere, the surrounding
fluid moves with it, so that the effective mass of the sphere (measured by the ratio
between the acceleration to the external force) increases. The supersonic object
radiates the wake of waves.

plasmas. Examples of dressing by surrounding media are illustrated in Figure 2.4.
In the case of a sphere in a fluid, the surrounding fluid moves with it, so that the
effective mass of the sphere (defined by the ratio between the external force to
the acceleration) increases by an amount (27t/3) pa>, where a is the radius of the
sphere and p is the mass density of the surrounding fluid. The supersonic object
radiates the wake of waves (b), thus its motion deviates from one in a vacuum.

At this point, it is instructive to compare the test particle model of thermal
equilibrium to the well-known elementary model of Brownian fluctuations of a
particle in a thermally fluctuating fluid. This comparison is given in Table 2.1,
below.

Predictably, while there are many similarities between Brownian particles and
thermal plasma fluctuations, a key difference is that in the case of Brownian
motion, the roles of emission and absorption are clearly distinct and played, respec-
tively, by random forces driven by thermal fluctuations in the fluid and by Stokes
drag of the fluid on the finite size particle. In contrast, for the plasma the roles
of both the emitter and absorber are played by the plasma particles themselves
in the differing guises of discreteness and as chunks of the Vlasov fluid. In the
cases of both the Brownian particle and the plasma, the well-known fluctuation—
dissipation theorem of statistical dynamics near equilibrium applies, and relates
the fluctuation spectrum to the temperature and the dissipation via the collective
mode dissipation, i.e. Ime(k, w), the imaginary part of the collective response
function.
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Table 2.1. Comparison of Brownian particle motion and plasma fuctuations

Brownian motion Equilibrium plasma

Excitation Ve — velocity mode Ey o — Langmuir wave mode
Fluctuation spectrum (172) (Ez>
® \ k.w
Emission noise (Zzz)w — random acceleration dmgS(x — x(r)) — particle
by thermal fluctuations discreteness source
Absorption Stokes drag on particle Ime — Landau damping of
collective modes
. . : dv - .
Governing equations @ +pv=a V- D =4ngs(x — x(t))
r

2.2.2 Fluctuation spectrum

Having discussed the essential physics of the TPM and having identified the
dressed test particle as the quasi-particle of interest for the dynamics of near-
equilibrium plasma, we now proceed to calculate the plasma fluctuation spectrum
near thermal equilibrium. We also show that this spectrum is that required to satisfy
the fluctuation—dissipation theorem (F-DT). Subsequently, we use the spectrum to
calculate plasma relaxation.

2.2.2.1 Coherent response and particle discreteness noise

As discussed above, the central tenets of the TPM are that each particle is both a
discrete emitter as well as a participant in the screening or dressing cloud of other
particles and that the fluctuations are weak, so that linear response theory applies.
Thus, the total phase space fluctuation §f is written as

where [ is the coherent Vlasov response to an electric field fluctuation, i.e.
f/f.,w = Ri,wEk,ws

where Ry, is a linear response function and f is the particle discreteness noise

source, 1.e.
N

. 1
: = — C ",f*"l- Fo) ) — v; (1, 2
fx,v,1) ; Y 80— xi ()8 — v (1)) (2.2)

i=1

(see, Fig. 2.5). For simplicity, we consider high frequency fluctuations in an
electron—proton plasma, and assume the protons are simply a static background.
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Fig. 2.5. Schematic drawing of the distribution of plasma particles. The distribu-
tion function, f (x,v), is divided into the mean (f), the goherent response [,
and the fluctuation part owing to the particle discreteness f.

Consistent with linear response theory, we use unperturbed orbits to approximate
xi (1), vi(¢) as:

v; (1) = v;(0), (2.32)
xi (1) = x;(0) + vit. (2.3b)

Since kgT > ¢?/7, the fundamental ensemble here is one of uncorrelated,
discrete test particles. Thus, we can define the ensemble average of a quantity
Atobe

(A) = n f dx; f dv; fo(vs, 1) A, 2.4)

where x; and v; are the phase space coordinates of the particles and fo is same
near-equilibrium distribution, such as a local Maxwellian. For a Vlasov plasma,

which obeys
a 0 0
L a9 (2.52)
ot 9x m v

the linear response function Ry, i8

R == _; 28 /8v, (2.5b)
' m w— kv
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Self-consistency of the fields and the particle distribution are enforced by Poisson’s
equation

Vi = —4m ) ngs / dv 8fs, (2.62)
S
so that the potential fluctuation may be written as:
d7tnog / ka w
=— d —, 2.6b
¢k,w k2 v E(k, C()) ( )

where the plasma collective response or dielectric function € (k, ) is given by:

5 8 (f) /dv

kw)=14+-2[d 2
cttw) =1+ [ 2L 2.60)

Note that Eqs.(2.6) relate the fluctuation level to the discreteness noise emission
and to € (k, w), the linear collective response function.

2.2.2.2 Fluctuations driven by particle discreteness noise

A heuristic explanation is given here that the ‘discreteness’ of particles induces
fluctuations. Consider a case that charged particles (charge g) are moving as shown
in Figure 2.6(a). The distance between particles is given by d, and particles are
moving at the velocity u. (The train of particles in Fig. 2.6(a) is a part of the
distribution of particles. Of course, the net field is calculated by accumulating
contributions from all particles.) Charged particles generate the electric field. The
time-varying electric field (measured at the position A) is shown in Figure 2.6(b).
When we make one particle smaller, but keeping the average density constant, the
oscillating field at A becomes smaller. For instance, if the charge of one parti-
cle becomes half g /2 while the distance between particles is halved, we see that
the amplitude of the varying electric field becomes smaller while the frequency
becomes higher. This situation is shown in Figure 2.6(b) by a dashed line. In the

limit of continuity, i.e.,

Charge per particle — 0
Distance between particle — 0,

while the average density is kept constant, the amplitude of the fluctuating field
goes to zero. This example illustrates why ‘discreteness’ induces fluctuations.

Before proceeding with calculating the spectrum, we briefly discuss an impor-
tant assumption we have made concerning collective resonances. For a discrete
test particle moving on unperturbed orbits,

f~q8(x — x0:(£)8 (v — vgp)
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(a) (b)
component of
electric field (at A)

O O O OO0

q time

Fig. 2.6. Schematic illustration that the discreteness of particles is the origin of
radiations. A train of charged particles (charge g, distance d) is moving near by
the observation point A (a). The vertical component of the electric field observed
at point A (b). When each particle is divided into two particles, (i.e. charge per par-
ticle is ¢ /2 and distance between particles is d/2), the amplitude of the observed
field becomes smaller (dashed curve in (b)).

SO

/ dU /A — (/e*'l/Cl'T

and
47t .
ek, o (t) = —/\jqe" ikvt,
Here, the dielectric is written as an operator €, to emphasize the fact that the
response is non-local in time, on account of memory in the dynamics. Then strictly

speaking, we have

¢/\'(f) — 6——1 . ]i%e—zkz:l} a5 (j)k,wke—[wkl~ (27)
In Eq.(2.7), the first term on the right-hand side is the inhomogeneous solution
driven by discreteness noise, while the second term is the homogeneous solution
(i.e. solution of €¢p = 0), which corresponds to an eigenmode of the system (i.c. a
fluctuation at k, @ which satisfies € (k, w) >~ 0, so w = wy). However, the condition
that the plasma be ‘near equilibrium’ requires that all collective modes be damped
(i.e. Imwy, < 0), so the homogeneous solutions decay in time. Thus, in a near-

equilibrium plasma,

4m .
1—00 k2
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Fig. 2.7. Fluctuation level near the stability boundary. Even if the modes are
stable, enhanced excitation of eigenmodes is possible when the controlling param-
eter approaches the boundary of stability. Linear theory could be violated even if
the eigenmodes are stable. Nonlinear noise is no longer negligible.

so only the inhomogeneous solution survives. Two important caveats are necessary
here. First, for weakly damped modes with Im w < 0, one may need to wait quite
a long time indeed to actually arrive at asymptopia. Thus the homogeneous solu-
tions may be important, in practice. Second, for weakly damped (‘soft’) modes, the
inhomogeneous solution ¢ ~ |Ime|~! can become large and produce significant
orbit scattering and deflection. The relaxation times of such ‘soft modes’, thus,
increase significantly. This regime of approach to marginality from below is anal-
ogous to the approach to criticality in a phase transition, where relaxation times
and correlation lengths diverge, and fluctuation levels increase. As in the case of
critical phenomena, renormalization is required for an accurate theoretical treat-
ment of this regime. The moral of the story related in this small digression is that
the TPM’s validity actually fails prior to the onset of linear instability, rather than
at the instability threshold, as is frequently stated. The behaviour of fluctuation
levels near the stability boundary is schematically illustrated in Figure 2.7. Even
if the modes are stable, enhanced excitation of eigenmodes is possible when the
controlling parameter is sufficiently close to the boundary of stability, approach-
ing from below. Linear response theory could be violated even if the eigenmodes

are stable.

2.2.2.3 Potential fluctuations

Proceeding with the calculation of the spectrum, we first define the spectral density
of the potential fluctuation as the transform of the potential fluctuation correlation
function, i.e.

<¢2>k :/OO dx/mdf '@k (§(0, 0 (x, 1)) (2.82)
w . 0

)
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and

(0 (0,0)p( y = - *dk > do i(kx—cwt) [ 12 .
(@0,0)p(x, 1)) = o (27[)’§ _96_2;6 <@ > . (2.8b)

Note that the transformation is a Fourier transform in space but a Laplace transform
in time. The “one-sided” Laplace transform is intrinsic to fluctuation and TPM
theory, as both are built upon the idea of causality, along with assumptions of sta-
tionarity and linear response. As linear response theory applies here, the fluctuation

modes are uncorrelated, so

($robrer) = 2m0)* <¢3>k 5k + k)8 (w + o). (2.8¢)

Therefore, from Eqgs.(2.8a)—(2.8¢) and Eq.(2.6b), we can immediately pass to the
expression for the potential fluctuation spectrum,

A (4 \2 (foio),
(#)= (F0) [on [ 09

Here (1) and (2) refer to points in phase space. Observe that the fluctuation spec-

trum is entirely determined by the discreteness correlation function < f (O f (2)>
and the dielectric function €(k, w). Moreover, we know ab initio that since the
plasma is in equilibrium at temperature 7', the fluctuation—dissipation theorem
applies, so that the TPM spectrum calculation must recover the general FDT result,
which is,
<D2>/<, @ 2T
— = — Imek, w). (2.10)
47t w

Here Dy, = €(k, w)Ey , is the electric displacement vector. Note that the FDT
quite severely constrains the form of the particle discreteness noise.

2.2.2.4 Correlation of particles and fluctuation spectrum

To calculate <f'(1')f(2‘)>k , we must first determine <f(l)f(2)>. Since f is the
distribution of discrete uncorrelated test particles, we have:

N
~ 1 ¢ \
foevn=— Y 80 = xi ()8 — v (). (2.11)

i=1
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From Eqgs.(2.3), (2.4) and (2.11), we obtain

-7 (f) ¥
(fnf@)= [ax [ L3 B —xa)

ij=1
X 8(x2 —x;(t)d(vy —v;(£))6(v2 — v (@))]. (2.12)

Since the product of 8s is non-zero only if the arguments are interchangeable, we
obtain immediately the discreteness correlation function

(Fof@)= %—)fscxl — x2)8(v1 — 12). 2.13)

Equation (2.13) gives the discreteness correlation function in phase space. Since
the physical model is one of an ensemble of discrete, uncorrelated test particles,

it is no surprise that f (D) f (2)) is singular, and vanishes unless the two points in

phase space are coincident. Calculation of the fluctuation spectrum requires the
velocity integrated discreteness correlation function C(k, ) which, using spatial

homogeneity, is given by:

Cthor= [au [an (fori@),

:/dvI/dvg [foodrefwf/dxe—”“x <f(0)f(x,r)>
0

I /io dr e—ior /dxe-ik-x <f(x, _f)f”(o)”, (2.14)

Note that the time history which determines the frequency dependence of C(k, w)
is extracted by propagating particle (2) forward in time and particle (1) backward
in time, resulting in the rwo Laplace transforms in the expression for C(k, w).
The expression for C(k, w) can be further simplified by replacing vy, v2 with
(v1 £ vp)/2, performing the trivial v_-integration, and using unperturbed orbits

to obtain

Ck, w) =2/dv /Oodrei‘”f/dxe_ik'xij—riv—))(%x — V1)
0

2 [0 D [ g oo
0

n

= / dv 2WM5(0) ~k-v). (2.15)
n

i
v
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Equation (2.15) gives the well-known result for the density fluctuation correlation
function in k, w of an ensemble of discrete, uncorrelated test particles. C(k, w) is
also the particle discreteness noise spectrum. Note that C(k, @) is composed of
the unperturbed orbit propagator §(w — k - v), a weighting function (f) giving
the distribution of test particle velocities, and the factor of 1/#n, which is a generic
measure of discreteness effects. Substitution of C(k, w) into Eq.(2.9) then finally
yields the explicit general result for the TPM potential fluctuation spectrum:

2 d7tng e / dv 2n (f) Sl —k - v)
o= ' : : )
. < 2 q) e, )P ——

2.2.2.5 One-dimensional plasma

In order to elucidate the physics content of the fluctuation spectrum, it is
convenient to specialize the discussion to the case of a 1D plasma, for which:

Clk, w) = = F(w/k) (2.17a)
nlk|vr
. Ang\*> 21 F(w/k)
ew ] - 217
) ”“(1@) Kot [e(k, @) S

Here, F refers to the average distribution function, with the normalization factor
of vt extracted, (f(v)) = (n/vr) F(v), and vt is a thermal velocity. It is interest-
ing to observe that <(f)2>k,w ~ (density) x (Coulomb spectrum) x (propagator) x
(particle emission spectrum) x (screening). Thus, spectral line structure in the TPM
is determined by the distribution of Cerenkov emission from the ensemble of dis-
crete particles (set by (f)) and the collective resonances (where €(k, w) becomes
small).

In particular, for the case of an electron plasma with stationary ions, the
natural collective mode is the electron plasma wave, with frequency w =
wp(l + ;//\'2}%)]*/2 (y: specific heat ratio of electrons) (Ichimaru, 1973; Krall and
Trivelpiece, 1973). So for w > wp, kvr, € — 1, we have;

5 4dmg 2 o » .
<(/)_>k " >~ ng F (a)/k)1 (2.18a)

k? |klvr

where I ~ exp[~w2/k2v%] for a Maxwellian distribution, while in the opposite
limit of @ < wp. kvr wherc € — 1 + k‘zkgz, the spectrum becomes
2m

2 2 2,2\ 72 .
<(/)7>zuu:”0<4m/>7m<Hl/k )»D) . (2.18b)
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In the first, super-celeric limit, the discrete test particle effectively decouples from
the collective response, while in the second, quasi-static limit, the spectrum is that
of an ensemble of Debye-screened test particles. This region also corresponds to
the kApe 3> | range, where the scales are too small to support collective modes. In
the case where collective modes are weakly damped, one can simplify the struc-
ture of the screening response via the pole approximation, which is obtained by
expanding € (k, w) about wy, i.e.

ek, w) = ek, w)+ilme(k, w)

d
~ ek, wp) + (0 — wy) ;—6 +iIme(k, wy). (2.19)
{C’,) (/}/\
So since € (k, wy) = 0,
. 1 [Im €|
L/lel” = { 21 0€ 2 2}
Tmel | (0 —wp)?§51% + [Ime|
1
— -6 (a) - wk). (2.20)

Ime||de/dw]

Here it is understood that Im € and de;/dw are evaluated at wy. Notice that in the
pole approximation, eigenmode spectral lines are weighted by the dissipation Im €.

The fluctuation spectrum of plasma oscillations in thermal equailibrium is
shown in Figure 2.8. The real frequency and the damping rate of the plasma oscilla-
tion are shown as a function of the wavenumber in (a). In the regime of kAp. << 1,
the real frequency is close to the plasma frequency, @ ~ wp, and the damping rate
is exponentially small. The power spectrum of fluctuations as a function of the
frequency is illustrated in (b) for various values of the wave number. In the regime
of kApe < 1, a sharp peak appears near the eigenfrequency @ ~ wy. Owing to the
very weak damping, the line width is narrow. As the mode number becomes large
(in the regime of kApe ~ 1), the bandwidth becomes broader, showing the fact that
fluctuations are generated and absorbed very rapidly.

2.2.2.6 Fluctuation—dissipation theorem and energy partition

By now, the reader is surely anxious to see if the results obtained using the test
particle model are in fact consistent with the requirements and expectations of
generalized fluctuation theory, as advertised. First, we check that the fluctuation—
dissipation theorem is satisfied. This is most easily accomplished for the case of a
Maxwellian plasma. There,

A

2 . 2
WpTC A (f)] 2nw  @p 1 (’(/))

Imée = ———"—| = (2.21a)

klkl v |, k2v2 |klvr
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Fig. 2.8. Illustration of the fluctuation spectrum of plasma oscillations. The real
frequency and the damping rate of the plasma oscillation are shown as a function
of the wavenumber in (a). In the regime of kApe <« 1, @ ~ wp holds and that
the damping rate is exponentially small. The power spectrum of fluctuation as a
function of the frequency is illustrated in (b) as a function of the wave number. In
the regime of kApe < 1, a high and sharp peak appears near the eigenfrequency
w ~ wy. Owing to the very weak damping, the line width is narrow. As the mode
number becomes large an in the regime of kApe ~ 1, the bandwidth becomes
broader, and the fluctuation intensity becomes high.

so using Eq.(2.21a) to relate Im € (k, @) to F(w/kvr) in Eq.(2.17b) gives

<¢2> _ 8nT Ime (2.21b)
Lo Ko €2’ '
so we finally obtain
D? 2T
2 ) = Ime (2.21c)
47t 0]

which is in precise agreement with the statement of the FDT for a classical, plasma
at temperature T. It is important to reiterate here that applicability of the FDT rests
upon to the applicability of linear response theory for the emission and absorp-
tion of each mode. Both fail as the instability marginal point is approached (from
below).

Second, we also examine the k-spectrum of energy, with the aim of comparing
the TPM prediction to standard expectations for thermal equilibrium, i.e. to see
whether energy is distributed according to the conventional wisdom of “T/2 per
degree-of-freedom”. To this end, it is useful to write (using Eq.(2.21)) the electric
field energy as:




34 Conceptual foundations

|Erwl?  4mng® F(w/k)

8 klk| w? 2 nwl 2
1_F + WF

where ¢, >~ 1 — a)g / w? for plasma waves, and F' = dF/dul, /k- The total electric
field energy per mode, Ey, is given by

, (2.22)

E 2
@:fm'gh (2.232)

so that use of the pole approximation to the collective resonance and a short
calculation then gives,

Eo=e® £ _ T (2.23b)

21kl [F'| 2 '

So, yes, the electric field energy for plasma waves is indeed at equipartition. Since
for plasma waves the particle kinetic energy density Eyin equals the electric field
energy density Ep (i.e. Exin = Ep), the total wave energy density per mode Wy
is constant at 7. Note that Eq.(2.23b) does not imply the divergence of total
energy density. Of course, some fluctuation energy is present at very small scales
(kApe 2 1) which cannot support collective modes. However, on such scales, the
pole expansion is not valid and simple static screening is a better approximation.
A short calculation gives, for k%%e > 1, E, = (T)/2)/ kQ)L%e, so that the rotal

electric energy density is
E2
(2} [
8m
> dk T/2 nT 1
AN NATY A Se
-0 7-[(1_*_16 /\De) nADe

As Eq.(2.24) is for 1D, there n has the dimensions of particles-per-distance. In 3D,
the analogue of this result is

| E? nT 1 (2.25)
< 87t 2 ”)‘13>e ’ '

so that the total electric field energy equals the total thermal energy times
the discreteness factor 1/ n)%efvl /N, where N is the number of particles in a
Debye sphere. Hence <E2 / 87[) <« nT/2, as is required for a plasma with weak
correlations.
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2.2.3 Relaxation near equilibrium and the Balescu~I.enard equation

Having determined the equilibrium fluctuation spectrum using the TPM, we now
turn to the question of how to use it to calculate relaxation near equilibrium. By
“relaxation” we mean the long time evolution of the mean (i.e. ensemble averaged)
distribution function (). Here long time means long or slow evolution in compar-
ison to fluctuation time scales. Generally, we expect the mean field equation for the
prototypical example of a 1D electrostatic plasma to have the form of a continuity
cquation in velocity space, i.e.
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Here, J(v) is a flux or current and ( f) is the corresponding coarse-grained phase

space density; J ——— 0 assures conservation of total (f). The essence of the
vV—=>x=CQ

problem at hand is how to actually calculate J(v)! Of course it is clear from the
Vlasov equation that J(v) is simply the average acceleration ((g/m)ESf) due to
the phase space density fluctuation § /. Not surprisingly, then, J (v) is most directly
calculated using a mean field approach. Specifically, simply substitute the total § f
into ((g/m)ESf) to calculate the current J(v). Since 8f = f¢+ f, J(v) will
necessarily consist of two pieces. The first piece, ((g/m)Ef°), accounts for the
diffusion in velocity driven by the TPM potential fluctuation spectrum. This contri-
bution can be obtained from a Fokker-Planck calculation using the TPM spectrum
as the noise. The second piece, ((q/m)E f ), accounts for relaxation driven by the

dynamic friction between the ensemble of discrete test particles and the Vlasov
fluid. It accounts for the evolution of (f) which must accompany the slowing
down of a test particle by wave drag. The second piece has the structure of a drag
term. As is shown in the derivation of Eq.(2.16), (Ef°) ultimately arises from the
discreteness of particles, fl.

The kinetic equation for ( f) which results from this mean-field calculation was
first derived by R. Balescu and A. Lenard, and so is named in their honour (Lenard,
1960; Balescu, 1963). The diffusion term of the Balescu—Lenard (B-L) equation is
very similar to the quasi-linear diffusion operator, discussed in Chapter 3, althcugh
the electric field fluctuation spectrum is prescribed by the TPM and the frequency
spectrum is not restricted to eigenmode frequency lines, as in the quasi-linear
theory. The total phase space current ./ (v) is similar in structure to that produced
by the glancing, small angle Coulomb interactions which the Landau collision
integral calculates. (See Rosenbluth ef al. (1957), Rostoker and Rosenbluth (1960)
and Ichimaru and Rosenbluth (1970) for the Fokker—Planck approach to Coulomb
collisions.) However, in contrast to the Landau theory, the B—L equation incorpo-
rates both static and dynamic screening, and so treats the interaction of collective
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ion acoustic  plasma wave
wave resonance . resonance

Fig. 2.9. Structure of {f;), (f.) for stable plasma. Velocity space configuration,
showing electron plasma wave resonance on the tail of fe and ion acoustic wave
resonance in the bulk of f,, f;. In the case with 7, > 7}, waves can resonate with
the bulk of the electron distribution while avoiding ion Landau damping. The
slope of f, is small at resonance, so ion acoustic waves aré only weakly damped.
In the case with 7, ~ T;, ion acoustic waves resonant in the bulk of fe cannot
avoid ion Landau damping, so the collective modes are heavily damped.

processes with binary encounters. Screening also eliminates the divergences in the
Landau collision integral (i.e. the Coulomb logarithm) which are due to long range
electrostatic interactions. Like the Landau integral, the B—L equation is ultimately
nonlinear in { f). ~

At this point, the sceptical reader will no doubt be entertaining question like,
“What kind of relaxation is possible here?”, “how does it differ from the usual
collisional relaxation process?” and “just what, precisely, does ‘near equilibrium’
mean?”. One point relevant to all these questions is that it is easy to define states
that have finite free energy, but which are szable to collective modes. One example
is the current-driven ion acoustic (CDIA) system shown in Figure 2.9. Here the
non-zero current, which shifts the electron Maxwellian, constitutes free energy.
However, since the shift does not produce a slope in (f,) sufficient to overcome
ion Landau damping, the free energy is not accessible to linear CDIA instabilities
(Ichimaru, 1973). Nevertheless, electron — ion momentum transfer is possible,
and can result in electron relaxation, since the initial state is nof one of maximum
entropy. Here, relaxation occurs via binary interactions of dressed test particles.
Note however, that in this case relaxation rates may be significantly faster than
for “bare’ particle collisions, on account of fluctuation enhancement by weakly
damped collective modes. Thus, the B-L theory offers both something old and
something new relative to its collisional antecedent, the Landau theory.

In order to best elucidate the physics of relaxation processes, we keep the calcu-
lations as simple as possible and divide our discussion into three parts. The basic
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theory is developed for an electrostatic plasma in one dimension, and then applied
to single species and two species relaxation processes. Single species relaxation
in 3D is then considered followed by a discussion of collective enhancement of

momentum exchange.

2.2.3.1 Kinetic equation for mean distribution function

The Balescu—Lenard equation may be derived by a mean-field calculation of the
fluctuation-induced acceleraticn (g/m) (ESf). Specifically,

8() B8aq,..,
ar  dum (Eof)
= —iJ('U), : (2.27)
dv

where J (v) must be calculated using the rotal §f, which includes both the linear
response f¢ and the discreteness fluctuation /. Thus, substitution of

8f = S+ f,

yields

Jw) = ~<% (Ef)+ L <1f,f>>

m
3 {f)

dv

—D(v) + F(v), (2.28)

where D(v) is the fluctuation-induced diffusion, while F(v) is the dynamical
friction term. Consistent with linear response theory, we can then write:

(g/m)EL o 0 (f)

C
=—i (2.29a)
Jrw w—kv 0v
so for stationary fluctuations, a short calculation gives:
. (/2 ) o)
D) = K2 < > 78 (o — kv). (2.29b)
Z m? ¢ k,w

The spectrum <¢3> 1, 18 understood to be the test particle model spectrum, i.e. that
of Eq.(2.17b). Similarly, the dynamic friction term £ (v) is given by
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where, via Eq.(2.6b), we have:

) ?\ 47[”0[/ i W ‘A2 \
<wj/1<.m: k2 /dl ek, w)* (2.300)

This result explains that the discreteness of particles is the source of correlations
in the excited mode. Since

) B '4mz()(l\ e Ck, w)
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and (from Eq.(2.14))

Ck, w) = <ﬁz>/

= /dv 278 (w — kv) (f (v))

we have

A (4mnog 27(8(0) —kv) (f)
<¢f>/\ v ( k? > ek, w)* .

Thus, the current J(v) is given by:
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Note that the contributions from the diffusion D(v) and dynamic friction F(v)
have been grouped together within the brackets. Poisson’s equation relates ¢ (k, o)
to the electron and ion susceptibilities x (k, w) by
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where xi, x. are the ion and electron susceptibilities defined by
Rkw = 71('1\7 C’))¢k.w~
It is straightforward to show that
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where
drtngg

k2

Imei(k, w) = Im xi(k, w). (2.32b)

Here €i(k, w) is the ion contribution to the dielectric function. Thus, we finally
obtain a simplified expression for J(v):

o i)é 2/ 012 )5(&)—](1))
J(v) = Z<k2> <770/<UT le(k, w)|?

k,w
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& {F <%> g? —(f(w) F’ <%> +Imeik, w) (f);. (2.33)

Equation (2.33) gives the general form of the velocity space electron current in
the B-L equation for electron relaxation, as described within the framework of
the TPM.

In order to elucidate the physics content of J(v), it is instructive to re-write
Eq.(2.33) in alternative forms. One way is to define the fluctuation phase velocity
by u = w/k, so that
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X {F(u) (f) = F'w) (f () + Im ek, ) (f(v)>}~ (2.34)

Alternatively, one could just perform the summation over frequency to obtain
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k
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X {F(v) — (f () F'(v) + Ime(k, kv) (f(v)>]- (2.35)
Finally, it is also useful to remind the reader of the counterpart of Eq.(2.33) in the
unscreened Landau collision theory, which we write for 3D as:

/
Jo(p) = *Z/ d39/d3p/ W(p.,p’,q)qafw{f(pﬁ ag(p) - 8{[(17 >f(p)}-
ei Y9 Pg Ipg
' (2.36)
InEq.(2.36), W(p. p’, ¢) is the transition probability for a collision (with momen-
tum transfer ¢) between a ‘test particle’ of momentum p and a ‘field particle’
of momentum p’. Here the condition |¢| < |pl,|p| applies, since long range
Coulomb collisions are ‘glancing’.
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Fig. 2.10. Like-particle collisions in (a) 1D and (b) 3D.

2.2.3.2 Offset on Landau—Rosenbluth theory
Several features of J(v) are readily apparent. First, just as in the case of the Landau
theory, the current J (v) can be written as a sum of electron—electron and electron—
ion scattering terms, i.e.
3 {f)
v

J(v) = _liDe‘e(U) + Fee(v) + Fe.i(v):'- (2.37)
tere D (v) refers to the diffusion (in velocity) of electrons by fluctuations
excited by electron discreteness emission, F; ¢(v) is the dynamical friction on elec-
trons due to fluctuations generated by discreteness, while F. ; is the electron—ion
friction produced by the coupling of emission (again due to electron discreteness)
to dissipative ion absorption. Interestingly, in 1D,

a{f)
v
since F' = (f) for single specics interaction. Thus, we see that electron—electron

Jriction exactly cancels electron diffusion in 1D. In this case,

J() ~8(u —v)Imeik, w) {fe(v)),

—De,c(v) + Fee(v) ~ 8 — ){=Fw) (f)' + F'(f)} =0,

so that electron relaxation is determined solely by electron—ion friction. This result
is easily understood from consideration of the analogy between same-species inter-
action in a stable, 1D plasma and like-particle collisions in 1D (Figure 2.10). On
account of conservation of energy and momentum, it is trivial to show that such
collisions leave final state = initial state, so no entropy production is possible and
no relaxation can occur. This fact is manifested in the B-L theory by the can-
cellation between electron—electron terms — since the only way to produce finite
momentum transfer in 1D is via inter-species collisions, the only term that sur-
vivesin J(v) is Fe j(v). Note that this result is not a purely academic consideration,
since a strong magnetic field By often imposes a 1D structure on the wave—particle
resonance interaction in more complicated problems.
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Table 2.2. Comparison of Landau and Balescu-Lenard relaxation theory

Laudau theory B-L theory
Physical scenario “Test’ particle scattered by Test particle scattered by
distribution of ‘field’ distribution of fluctuations
particles with vpn = w/k, produced via
discreteness
Scatterer distribution f(phH Fu), u=w/k
Field particles distribution Fluctuation phase velocity
distribution
Correlation Uncorrelated particles as Discrete uncorrelated test
assumed molecular chaos particles
(f(L,2)) = (fUN(fD) <ff> = ((f) /m)é(x)é(v)
Screening None

Coulomb InA factor put in 1/]e(k, w)|?
‘by intuition’

Scattering strength lg] < |pl Linear response and
Weak deflection unperturbed orbits
Interaction selectionrule  W(p, p’, q¢) =6(p — p) 6(u —v)in 1D
in 1D, 1 species S(k-(v—2v"))in 3D

A detailed comparison and contrast between the Landau theory of collisions and
the B-L theory of near-equilibrium relaxation is presented in Table 2.2.

2.2.3.3 Resistivity (relaxation in one-dimensional system)

Having derived the expression for J(v), it can then be used to calculate trans-
port coefficients and to macroscopically characterize relaxation. As an example,
we consider the effective resistivity associated with the current driven system
of Figure 2.9. To construct an effective Ohm’s law for this system, we simply
write
8U)  4p 3N __3I0) (2.38a)
ot m dv dv

and then multiply by npgv and integrate to obtain, in the stationary limit,

J
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0l ) T gk \ T ) ()
k.o
= et /0. (2.38b)
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Not surprisingly, the response of (f,) to Eg cannot unambiguously be written as a
simple, constant effective resistivity, since the resonance factor §(w — kv) and the
k. w dependence of the TPM fluctuation spectrum conflate the field particle dis-
tribution function with the spectral structure. However, the necessary dependence
of the effective resistivity on electron—ion interaction is readily apparent from the
factor of Ime; (k, w). In practice, a non-trivial effect here requires a finite, but not
excessively strong, overlap of electron and ion distributions. Note also that collec-
tive enhancement of relaxation below the linear instability threshold is possible,
should Im € (k, w) become small.

2.2.3.4 Relaxation in three-dimensional system

Having discussed the 1D case at some length, we now turn to relaxation in 3D
(Lifshitz and Pitaevskii, 1981). The principal effect of three dimensionality is
to relax the tight link between particle velocity v and fluctuation phase veloc-
ity (w/ }k})/:’. Alternatively put, conservation constraints on like-particle collisions
in 1D force the final state = initial state, but in 3D, glancing collisions which
conserve energy and the magnitude of momentum |p|, but change the parti-
cle’s directions, are possible. The contrast between 1D and 3D is illustrated in
Figure 2.10. In 3D, the discreteness correlation function is

Clk, w) = (i) = /d3 vi—“a‘(w —k-v)(f). (2.39)
0

So the B-L current J (v) for like-particle interactions becomes

2+ 2 2
(%) kw
J(v) = Z (/8—) vrnole(k, w)|?

k,(l)
X k{/dv’é(w—k-v/) (F(") k- a;?
, ng 0(f) . :
— [ dvd(w—k- -v)k- ay/-(j(v)) . (2.40a)

Note that the product of delta functions can be re-written as
S(w—k-v)§(w—k - v)=8w—k-v)§tk-v—Fk-v).

We thus obtain an alternate form for J(v), which is
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Jw=-Y (‘_“_5>22”25<w —k-v)

o k2 ) vngle(k, w)|?

% {k/dv/é(k-v*k-b/)[<f(v/)>k. o Lf) —k- 9/ (f(v))}}.
ov ov’
(2.40b)

This form illustrates an essential aspect of 3D, which is that only the parallel (to
k) components of test and field particle velocities v and v’ need be equal for inter-
action to occur. This is in distinct contrast to the case of 1D, where identity, i.e.
v = v = u, is required for interaction. Thus, relaxation by like-particle interac-
tion is possible, and calculations of transport coefficients are possible, following
the usual procedures of the Landau theory.

2.2.3.5 Dynamic screening
We now come to our final topic in B-L theory, which is dynamic screening. It is
instructive and enlightening to develop this topic from a direction slightly differ-
ent from that taken by our discussion up till now. In particular, we will proceed
from the Landau theory, but will calculate momentum transfer including screening
effects and thereby arrive at a B-L equation.

2.2.3.6 Relaxation in Landau model

Starting from Eq.(2.36), the Landau theory expression for the collision-induced
current (in velocity) may be written as:

af (p) af (p)
Jiw(p) = }: /d3 ’[ — ’———}Ba , 2.41
(p) 2 P | f(p) o, fp) TR B (2.41a)
where -
Bu g = Efdo gagplv — V' (2.41b)

The notation here is standard: do is the differential cross-section and g is the
momentum transfer in the collision. We will calculate B, g directly, using the same
physics assumptions as in the TPM. A background or ‘field’ particle with velocity
v’, and charge ¢’ produces a potential field

o S il o) (2.422)
=——— 28w —k-v), 42a
RO K2k, w)
so converting the time transform gives
4re’ —ik-v/t.

Gr(t) = me (2.42b)
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Unperturbed
orbit

P |
|
Fig. 2.11. Deflection orbit and unperturbed orbit.

From this, it is straightforward to calculate the net deflection or momentum transfer
g by calculating the impulse delivered to a test particle with charge e moving along
an unperturbed trajectory of velocity v. This impulse is:

EA%
q = —/ —dz, (2.43a)

=ptor 8}’
where the potential energy V is just

V=rc¢
Siker —ikv't

Y c €
= 4mee’ | &k —--—. 2.43b)
7tee / /(26(](,]('1)/) ( D)

Here p is the impact parameter for the collision, a representation of which
is sketched in Figure 2.11. A short calculation then gives the net momentum

transfer g,

/ Bk —ike*P 28k - (v — V)
q = 47ee = >
(2m2) kee(k, k-v")

o[ A2k, —iketkLr
= 47tee T - = (2.44)
Q2m) k*e(k, k- v')|v — v/|

To obtain Eq.(2.44), we use

N 5 (ky
bk-(v—v))= —— "), ;
v — v

and the directions || and L are defined relative to the direction of v — v’. Since

J ~ /;2. we may write By g as,

gy
3
N
N

By g = /dzp Gaqplv — V'l
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Noting that the d?p integration just produces a factor of (271)%8 (kL A kL) we can
then immediately perform one of the | d’k | integrals in By, g to get,

By g = 202" / A2k, KLakLg : (2.46)
k2 ek, k- v)|2|v — v'|

It is easy to see that Eq.(2.46) for B, g (along with Eq.(2.41a)) is entirely equiv-
alent to the B-L theory for J(v). In particular, note the presence of the dynamic
screening factor € (k, k - v'). If screening is neglected, ¢ — 1 and

2

k
Bo,g ~ /dzki |€|2J}<4 ~ /dkL/k_L ~ In(k L max/ k Lmin),
i

which is the familiar Coulomb logarithm from the Landau theory. Note that if
k,w— 0,

ke~ k3 +1/A3,
so that Debye screening eliminates the long-range divergence (associated with
k1 min) without the need for an ad hoc factor. To make the final step toward recov-
ering the explicit B-L result, one can ‘undo’ the dk|| integration and the frequency
integration to find,

Byg = 2(ee/)2/00 da)/ P 5(w—k-v)8(0)—k-v/)kai. (2.47)
’ - ke <Kmmax k*e(k, w)|?

Here kiax 1s set by the distance of closest approach, i.e.

2
H vrel
-

~

kmax

Substituting Eq.(2.47) for By g into Eq.(2.41a) recovers Eq.(2.40a). This short
digression convincingly demonstrates the equivalence of the B-L theory to the
Landau theory with dynamic screening.

2.2.3.7 Collective mode
We now explore the enhancement of relaxation by weakly damped collective
modes. Consider a stable, two species plasma with electron and ion distribution
functions, as shown in Figure 2.9. This plasma has no free energy (i.e. no net cur-
rent), but is not necessarily a maximum entropy state, if 7. # 7;. Moreover, the
plasma supports two types of collective modes, namely

(1) electron plasma waves, with vre < w/k.
(ii) ion acoustic waves, with vr; < w/k < vre,
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where vre and vy are the electron and ion thermal speeds, respectively. Electron
plasma waves are resonant on the tail of ( f,), where there are few particles. Hence
plasma waves are unlikely to influence relaxation in a significant way. On the other
hand, ion acoustic waves are resonant in the bulk of the electron distribution. More-
over, if To > Tj, itis easy to identify a band of electron velocities with significant
population levels f but for which ion Landau damping is negligible. Waves reso-
nant there will be weakly damped, and so may substantially enhance relaxation of
(fe(v)). It is this phenomenon of collectively enhanced relaxation that we seek to
explore quantitatively.

To explore collective enhancement of relaxation, we process from Eq.(2.47),
make a pole expansion around the ion acoustic wave resonance and note for ion
acoustic wave, w < k - v (for electrons), so

00 . e, (k,
Bop = 27[(/4/ dw/dﬂka(k.v)(xk Ly Stk o) (2.48)
—00

Ime(k, o)
Here €, (k, wi)=0 for wave resonance, and e=e'=g, as scattered and field particles
are all electrons. The term Im e (k, w) refers to the collective mode dissipation rate.
Now, changing variables according to

R=Fk n
/q:k-v, kgsk-v/

n=vxv/lvxvl.

We have
*k = dRdk;dka/|v x V'],

so the k1, k> integrals in Eq.(2.48) may be immediately performed, leaving

D o S (er(k, \
By g = 21" nang / dk/ s LN (2.49)
[v x V| R0 "R2[Ime| Ime|

We remind the reader that this is the piece of By, g associated with field particle
speeds or fluctuation phase speeds v/ ~ w/k < vre for which the collective
enhancement is negligible and total J(v) is, of course, the sum of both these
contributions. Now, the dielectric function for ion acoustic waves is,

’)

ws 1
Ree(k,w) =1 — Zu% + PTER (2.50a)
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mw [ 1 1 2912, 2 o
Imek, w) = ;—3<n + — g /2K 1Ti>. (2.50b)
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Here Ape and Ap; are the electron and ion Debye lengths, respectively. Anticipating
the result that
k*c?
2 s
W= e
_ 1+ k%205,
for ion acoustic waves, Egs.(2.50a, 2.50b) together suggest that the strongest col-
lective enhancement will come from short wavelength (i.e. kzk]%e Z 1), because
Ime(k, w) is smaller for these scales, since

1 w
kz)x%é kvTe .

Imek, w) ~

For such short wavelengths, then
Bel) 235 (1 - o /a)2>
1
= Ewpi[c?(a) — wpi) + (o + wpi):[-
Evaluating By, g, as given by Eqs.(2.48) and (2.49), in this limit then finally gives,

B . 4mig?wpingng / dk
“B =\ T x v K2|Tm e (k, wpi)|

2/2mgtvr A3, 1, L\
= —————nanﬁ/dé l+exp|—=—+ = , (2.51a)

2
[v x v'[Ap, 2 2

where:

[(F) 2]
L=Inl|=] — (2.51b)
i) me

and & = k?A%,. Bquation (2.51a) quite clearly illustrates that maximal relaxation
occurs for minimal Im € (€, L), that is when exp[—1/2& + L /2] <« 1. That is, the
collective enhancement of discreteness-induced scattering is determined by Ime
for the least damped mode. This occurs when £ 5 1/L, so that the dominant
contribution to By, g comes from scales for which

K= k-t <1/ ()\%eL).
Note that depending on the values of L and the Coulomb logarithm (In A, which

appears in the standard Coulombic scattering contribution to By, g from v’ ~ vre),
the collectively enhanced By g due to low velocity field particles (v < vre) may
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even exceed its familiar counterpart Coulomb scattering. Clearly, this is possible
only when 7t/ T; >> 1, yet not so large as to violate the tenets of the TPM and B-L
theories.

2.2.4 Test particle model: looking back and looking ahead

In this section of the introductory chapter, we have presented the test particle model
for fluctuations and transport near thermal equilibrium. As we mentioned at the
beginning of the chapter, the TPM is the most basic and most successful fluctuation
theory for weakly collisional plasmas. So, despite its limitation to stable, quiescent
plasmas, the TPM has served as a basic paradigm for treatments of the far more
difficult problems of non-equilibrium plasma kinetics, such as plasma turbulence,
turbulent transport, self-organization etc. Given this state of affairs, we deem it
instructive to review the essential elements of the TPM and place the subsequent
chapters of this book in the context of the TPM and its elements. In this way, we
hope to provide the reader with a framework from which to approach the complex
and sometimes bewildering subject of the physical kinetics of non-equilibrium
plasmas. The discussion that follows is summarized in Table 2.3. We discuss and
compare the test particle model to its non-equilibrium descendents in terms of both
physics concepts and theoretical constructs.

Regarding physics concepts, the TPM is fundamentally a “near-equilibrium”
theory, which presumes a balance of emission and absorption at each k. In a
turbulent plasma, non-linear interaction produces spectral transfer and a spec-
tral cascade, which can de-localize the location of absorption from the region of
emission in k, w space. A spectral cascade transfers turbulence energy from one
region in k (i.e. emission) to another (i.e. damping). There two cases are contrasted
in Figure 2.1.

A second key concept in the TPM is that emission occurs only via Cerenkov
radiation from discrete test particles. Thus, since the only source for collective
modes is discreteness, we always have

V.€E =4mgs(x — x(t)),
e)

A
)= T

In contrast, for non-equilibrium plasmas, nonlinear coupling produces incoherent
emission so the energy in mode k evolves according to,
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Table 2.3. Test particle model and its non-equilibrium descendents: physical
yZ20

concepts and theoretical constructs

Test particle model

Non-equilibrium descendent

Physics concepts

Emission versus absorption
balance per k

Discreteness noise

Relaxation by screened
collisions

Theoretical constructs
Linear response unperturbed
orbit

Damped mode response

Mean-field theory

Discreteness-driven stationary
spectrum

Balescu—Lenard, screened
Landau equations

Spectral cascade, transfer, inertial range
(Chapter 5, 6)

Incoherent mode-coupling (Chapter 5, 6),
granulation emission (Chapter 8)
Collective instability-driven relaxation,
quasi-linear theory, granulation interaction
(Chapter 3, 8)

Turbulence response, turbulent diffusion,
resonance broadening (Chapter 4, 6)
Nonlinear dielectric, wave—wave interaction,
wave kinetics (Chapter 5, 6)

Mean-field theory without and with
granulations (Chapter 3, 8)

Wave kinetics, renormalized mode coupling,
disparate scale interaction (Chapter 5 — 7)
Quasi-linear theory, Granulation relaxation
theory (Chapter 3, 8)

)+ (2

©

= Y @) pg(E
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where Spy is the discreteness source and ygy, is the linear damping for the mode k
(Kadomtsev, 1965). For sufficient fluctuation levels, the nonlinear noise term (i.e.
the first on the right-hand side) will clearly dominate over discreteness. A similar
comment can be made in the context of the left-hand side of Eq.(2.52), writ-
ten above. Nonlinear damping will similarly eclipse linear response damping for
sufficiently large fluctuation levels.

A third physics concept is concerned with the mechanism of relaxation and
transport. In the TPM, these occur only via screened collisions. Collective effects
associated with weakly damped modes may enhance relaxation but do not funda-
mentally change this picture. In a non-equilibrium plasma, collective modes
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can drive relaxation of the unstable (f), and nonlinear transfer can couple the
relaxation process, thus enhancing its rate.

In the realm of theoretical constructs and methods, both the test particle
model and its non-equilibrium counterparts are fundamentally mean-field type
approaches. However, they differ dramatically with respect to particle and model
responses, nature of the wave spectrum and in how relaxation is calculated.
The TPM assumes linear response theory is valid, so particle response functions
exhibit only ‘bare’ Landau resonances. In contrast, scattering by strong electric
field fluctuations will broaden the Landau resonance and renormalize the Landau
propagator, so that,

00
Ri,w ~ eik'*'/ el 0T o —ikx(~T) g,
0

~ / gll@—kv)rq, — i/(w— kv) (2.53a)
0
becomes,
Rk,w ~ / elot e—zkxo(—r) <e-—zk§x(—r)>dt
0
e kvyr— 2D 3 .
~ / gllo—kT=5"17q o i/(w—kv-+i/t.), (2.53b)
0
where 1/7, = (k%D / 3)!/3. This is equivalent to the renormalization
. -1 . 9 87!
[—ile—kv)]" > | —i(w—kv)— —D—| . (2.53¢)
ov  dv

Here D = D [<E2>] is a functional of the turbulence spectrum. In a similar way
to that sketched in Eq.(2.53), collective responses are renormalized and broadened
by nonlinear wave interaction. Moreover, in the non-equilibrium case, a separate
wave kinetic equation for N (k, x, t), the wave population density, is required to
evolve the wave population in the presence of sources, non-linear interaction and
refraction, etc. by disparate scales. This wave kinetic equation is usually written in
the form,

ﬂJ—(vg-#v)~\7N—;}F(cu%—k-v)-%/—Z—:S;‘-NTC;C(N). (2.54)

ar

Since in practical problems, the mean field or coarse grained wave population
density (N) is of primary interest, a similar arsenal of quasi-linear type closure
techniques has been developed for the purpose of extracting (N) from the wave
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kinetic equation. We conclude by noting that this discussion, which began with
the TPM, comes full circle when one considers the effect of nonlinear mode
coupling on processes of relaxation and transport. In particular, mode localized
coupling produces phase space density vortexes or eddies in the phase space fluid.
These phase space eddies are called granulations, and resemble a macroparticle
(Lynden-Bell, 1967; Kadomtsev and Pogutse, 1970; Dupree, 1970; Dupree, 1972;
Diamond et al., 1982). Such granulations are associated with peaks in the phase
space density correlation function. Since these granulations resemble macropar-
ticles, it should not be too surprising that they drive relaxation via a mechanism
similar to that of dressed test particles. Hence, the mean field equation for (f)
in the presence of granulations has the structure of a Balescu-Lenard equation,
although of course its components differ from those discussed in this chapter.

2.3 Turbulence: dimensional analysis and beyond — revisiting the theory
of hydrodynamic turbulence

So, naturalists observe, a flea
Hath smaller fleas that on him prey,
And those have smaller yet to bite ’em,
And so proceed ad infinitum;
Thus every poet in his kind,
Is bit by him that comes behind.
(Jonathan Swift, from “On poetry: a Rhapsody”)

We now turn to our second paradigm, namely Navier—Stokes turbulence, and the
famous Kolmogorov cascade through the inertial range. This is the classic example
of a system with dynamics controlled by a self-similar spectral flux. It constitutes
the ideal complement to the TPM, in that it features the role of transfer, rather
than emission and absorption. We also discuss related issues in particle dispersion,
two-dimensional turbulence and turbulent pipe flows.

2.3.1 Key elements in Kolmogorov theory of cascade

2.3.1.1 Kolmogorov theory

Surely everyone has encountered the basic ideas of Kolmogorov’s theory of high
Reynolds number turbulence! (McComb, 1990; Frisch, 1995; Falkovich et al.,
2001; Yoshizawa et al., 2003). Loosely put, it consists of empirically motivated
assumptions of: ‘

(1) spatial homogeneity —i.e. the turbulence is uniformly distributed in space;
(2) isotropy —1i.e. the turbulence exhibits no preferred spatial orientation;






